Astronomy 101: Principles of Astronomy
San Diego State University
Spring 2010

Lecture times and locations:
Section 2 (Schedule Number 20244): T/Th 9:30 AM — 10:45 PM, Rm. SH-247 (Storm Hall).
Section 4 (Schedule Number 20246): T/Th 2:00 — 3:15 PM, Rm. NE-060 (North Education Building).

Instructor: Douglas Leonard
Office: Room 238, Physics building
Email: leonard@sciences.sdsu.edu [Note: “Plain-text” emails strongly preferred!]
Telephone: 619-594-2215
Office Hours: Thursday 3:30 — 5:30 PM (no appointment needed, just drop by; other days/times available by appointment)

Website: http://sciences.sdsu.edu/~leonard/astro101 (Note: This course is not on Blackboard.)

Required Course Material:
Text: Voyages To the Stars and Galaxies, third edition (“Media Update Edition”), by Andrew Fraknoi, David Morrison, & Sidney C. Wolff. [Note: It is recommended that you purchase a new copy at the campus bookstore of the text, so that you will get a valid “access code” that allows you to view the on-line tutorials.]

Course Reader: Available at the campus bookstore. Contains PowerPoint slides, weekly assignments, exam information, and additional required reading material.

Course Description

Finding our place in the universe has been a perennial human pastime. Here we present the results of this ongoing endeavor, covering such topics as the solar system, stars, black holes, galaxies, and cosmology. A particular emphasis will be placed on the historical development of ideas and their philosophical implications. The class assumes no prior background in astronomy, although a general knowledge of science at the high-school level will be helpful. Mathematics will be limited to algebra and geometry. Prerequisite: Interest.

Student Learning Objectives

Upon completing this course, you should be able to:

• Describe the physical location of the Earth with respect to the other constituents of the observable universe, and articulate the process by which humans attained this understanding;

• Convince a fellow student who has never taken an astronomy class that it is possible to determine the chemical constituents of a star without ever visiting it, through the careful analysis of its light;

• Explain the process by which stars, like our sun, produce energy;

• Present the currently favored scientific theory for what the ultimate fate of our universe will be, and outline the astronomical observations upon which the theory is based;

• Read and comprehend articles concerning astronomy that appear in the popular press, and participate in discussions about them;

• Describe at least three major areas in which our astronomical knowledge is known to be incomplete.

Course Syllabus

Week 1 (January 18 → January 22): A Beginning

Topics covered – The supernova of 1054 A.D.; the finite speed of light and the cosmic time machine.

Readings from text – Prologue: §1 – 6.

→ Note: The first class is on Thursday, January 21.

Week 2 (January 25 → January 29): A Beginning

Topics covered – A brief tour of the universe; introduction to the night sky and the celestial sphere; conceptual schemes; the nature of science; constellations; basic astronomical observations every theory must explain: motion of stars, Sun and planets; the zodiac; retrograde motion; astronomy in ancient times; the construction of cosmologies.

Readings from text – Prologue: §7 – 10; Appendix 4; Appendix 5; Chapter 1: §1.1.

Readings from Reader – A Mathematical Toolkit; Reading Graphs; A Few Mathematical Skills.

Week 3 (February 1 → February 5): A Monk Moves the Earth

Topics covered – Ptolemy’s Almagest: the geocentric cosmology that (nearly) everyone believed; Aristarchus’ heliocentric proposal; Aristotle and Plato; a mathematical toolkit; Eratosthenes measures the Earth; Ptolemy’s Tetrabiblos and the perceived power of astrological prediction; Copernicus’ De Revolutionibus; Galileo’s telescope, and the “proof” of heliocentrism; Hipparchus and precession.

Readings from text – Chapter 1: §1.2, 1.3, 1.4.

Week 4 (February 8 → February 12): Gravity Explains it All

Topics covered – Tycho’s observations and painful death; Kepler’s Laws; Isaac Newton’s genius: the Principia, his Laws of Motion, and the occult force of gravity.

Readings from text – Chapter 2: §2.1, 2.2, 2.3.1.

Readings from Reader – Kepler and Newton.

Week 5 (February 15 → February 19): Other Worlds

Topics covered – Orbital motions; testing a prediction: the discovery of Neptune; solar and lunar eclipses; a tour of the solar system: planets, moons, asteroids, and comets; origin and age of the solar system.

Readings from text – Chapter 2: §2.3.2, 2.4 → 2.6; Chapter 3: §3.7.

Readings from Reader – Angular Size; Other Worlds: An Introduction to the Solar System.

1Specific reading assignments subject to change. Please consult each week’s Weekly Handout (Weekly Handouts are contained in the Course Reader; the most updated versions are always posted to the course web-site by 12:00 PM on the Monday of each week) for the exact reading being assigned.
Week 6 (February 22 → February 26): *Atoms and Light*

Topics covered – Structure of atoms; periodic table of elements; apparent brightness, luminosity, inverse square law of light propagation and the utility of standard candles; basic properties of light: speed, dispersion, ROYGBIV.

Readings from text – Chapter 4: §4.1.4, 4.3.1, 4.4.1, 4.4.2; Chapter 8: §8.1.1.

→ Midterm Exam #1 taken in class on Thursday, February 25.

Week 7 (March 1 → March 5): *Light: It’s All We Have*

Topics covered – The science of spectroscopy; the fingerprints of the elements; Kirchoff’s Laws; light as a wave: the electromagnetic spectrum.

Readings from text – Chapter 4: §4.1.1, 4.1.2, 4.2.1, 4.3.2, 4.3.3.

Readings from Reader – Light waves (first part).

Week 8 (March 8 → March 12): *And Still More About Light*

Topics covered – Light as a wave: the electromagnetic spectrum, radial velocity, Doppler effect, blue(red) shift; proper motion; the discovery of extrasolar planets; light as a particle: photons, and a brief introduction to quantum mechanics; introduction to blackbody radiation: hotter means bluer and brighter; sunspots.

Readings from text – Chapter 4: §4.1.3, 4.2.2, 4.2.3 (qualitatively only), 4.4.3, 4.5, 4.6; Chapter 6: §6.1.2 (partial); Chapter 8: §8.4.3, 8.4.4; Chapter 12: §12.4.1, 12.4.2.

Readings from Reader – Light waves (second part).

→ **Note**: This week is the only week of the semester to be impacted by furlough. Both classes (i.e., on Tuesday, March 16, and Thursday, March 18) are canceled this week, as are office hours.

Week 9 (March 15 → March 19): *Furlough Week*

Week 10 (March 22 → March 26): *Powering the Stars: Einstein Shows the Way*

Topics covered – Cecelia Payne-Gaposchkin’s thesis, and the discovery of the sun’s composition. Energy source of the Sun and stars: Nuclear fusion; \(E = mc^2 \): 1+1 < 2; neutrinos and antimatter; hydrostatic equilibrium; summary of stellar properties; how stars are born and how they live; low-mass vs. high-mass stars.

Readings from text – Chapter 6: §6.1.1; Chapter 7: §7.1, 7.2, 7.3.1, 7.3.2, 7.3.3, 7.4.2.

Readings from Reader – Nuclear Interactions; The Birth and Life of Stars.

Week 11 (March 29 → April 2): *Matter at Rest*

Topics covered – Sitting on the beach.

Readings from text – Subliminal message: Astronomy makes excellent beach reading.

→ **Note**: No classes this week — it’s Spring Break!
Week 12 (April 5 → April 9): How Stars Live and Die

Topics covered – Approaching stellar death; binary stars; stellar corpses I: The death of low-mass stars, white dwarfs, Chandrasekhar limit; stellar corpses II: The death of high-mass stars, neutron stars, black holes, core-collapse supernovae; synthesis of heavy elements; SN 1987A.

Readings from text – Chapter 9: §9.2.1, 9.2.2, 9.4.4; Chapter 13: §13.4.3, 13.4.4, 13.5.1, 13.5.3; Chapter 14: §14.1.1, 14.1.2, 14.1.3, 14.1.4, 14.2.

Week 13 (April 12 → April 16): Stellar Corpses

Topics covered – Pulsars; binary star evolution: Novae and Type Ia supernovae; black holes: the end of space and time; singularity; event horizon; finding black holes; proper care and feeding of black holes.

Readings from text – Chapter 14: §14.3.1, 14.4, 14.5; Chapter 15: 15.1.1, 15.5.1, 15.5.2, 15.5.3, 15.6.

Week 14 (April 19 → April 22): Hearts of Darkness I: An Introduction to Black Holes

Readings from text – Chapter 15: 15.1.2, 15.2, 15.3.

→ Midterm Exam #2 taken in class on Tuesday, April 20.

Week 15 (April 26 → April 30): Hearts of Darkness II: Into the Belly of the Beast

Topics covered – Einstein’s General Theory of Relativity II: Distorted time and gravitational redshift; adventures near a black hole; the search for gravitational waves; measuring celestial distances with parallax; standard candles (‘bulbs’) revisited: Cepheid stars; Edwin Hubble, the great Nebula Debate, and the birth of extragalactic astronomy; a universe of galaxies.

Readings from text – Chapter 15: §15.4, 15.5.4, 15.7; Chapter 10: §10.1, 10.2, 10.3.1; Chapter 17: §17.1.

Week 16 (May 3 → May 7): The Expanding Universe

Topics covered – The mystery of dark matter; supermassive black holes; Edwin Hubble discovers a law: The expanding universe; Big Bang cosmology; age of the universe; cosmological redshift.

Readings from text – Chapter 16: §16.3, 16.4; Chapter 17: 17.2; 17.3.1, 17.4.1, 17.4.2, 17.5; Chapter 18: §18.3.1; Chapter 19: §19.3.1.

Readings from Reader – An Expanding Universe; Measuring the Expected Deceleration; The Future of the Universe.

Week 17 (May 10 → May 14): An Ending and a Beginning

Topics covered – Effects of gravity and the expected deceleration; determining the expansion history of the universe with supernovae: the surprise of the decade (century?): the accelerating universe; the fate of our universe, and the limits of human knowledge.

→ Note: The last class is Tuesday, May 11.

→ Final Exam:
 Section 2 (9:30 AM class): Tuesday, May 18, 10:30 AM → 12:30 PM, Room SH-247 (normal lecture room).
 Section 4 (2 PM class): Thursday, May 20, 1:00 PM → 3:00 PM, Room NE-060 (normal lecture room).
Assignments and Course Grades

Course grades are based on the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>92.50 – 100%</td>
</tr>
<tr>
<td>A-</td>
<td>89.50 – 92.49%</td>
</tr>
<tr>
<td>B+</td>
<td>87.00 – 89.49%</td>
</tr>
<tr>
<td>B</td>
<td>82.50 – 86.99%</td>
</tr>
<tr>
<td>B-</td>
<td>79.50 – 82.49%</td>
</tr>
<tr>
<td>C+</td>
<td>77.00 – 79.49%</td>
</tr>
<tr>
<td>C</td>
<td>72.50 – 76.99%</td>
</tr>
<tr>
<td>C-</td>
<td>69.50 – 72.49%</td>
</tr>
<tr>
<td>D+</td>
<td>67.00 – 69.49%</td>
</tr>
<tr>
<td>D</td>
<td>62.50 – 66.99%</td>
</tr>
<tr>
<td>D-</td>
<td>59.50 – 62.49%</td>
</tr>
<tr>
<td>F</td>
<td>< 59.49%</td>
</tr>
</tbody>
</table>

Students taking the course using the credit/no credit option (“Cr/NC”) will receive a grade of “Credit” for achieving an equivalent letter grade of C or better. “No credit” will be given for equivalent letter grades of C- and below.

The final course grade will be determined based on your work in the following areas:

- **Homework assignments:** 10% of the course grade. In addition to the weekly reading assignment, nearly every week there will be a set of multiple-choice “quiz” questions assigned for you to complete on-line, at the course text-book’s web-site (http://www.ilrn.com). These assignments will be automatically graded on-line immediately after you take the quiz, with scores recorded in percentile form. Your lowest two homework assignment grades will be dropped when computing your final homework grade for the course. Details on these assignments, and how to access and complete them on-line, will be given during the second week of class.

- **Midterm Examination #1:** 20% of the course grade. The first midterm exam will be given in class on **Thursday, February 25**, and is worth 20% of the course grade. The nature of the midterm exams is described in the “Exam Preparation Material” section of the Course Reader, and will be discussed in detail a few weeks into the course.

- **Midterm Examination #2:** 30% of the course grade. The second midterm exam will be given in class on **Tuesday, April 20**, and is worth 30% of the course grade. It will be similar in form to the first midterm exam.

- **Final Examination:** 40% of the course grade. The final examination is a comprehensive exam covering the entire semester’s material. It will be given at the following times and places:

 Section 2 (9:30 AM class): **Tuesday, May 18, 10:30 AM → 12:30 PM,**

 Room SH-247 (normal lecture room).

 Section 4 (2 PM class): **Thursday, May 20, 1:00 PM → 3:00 PM,**

 Room NE-060 (normal lecture room).

 → **Note:** San Diego State University policy expressly forbids the administration of final exams other than at the scheduled time (see P. 445 of the General Catalog). The University’s final examination schedule is always posted online prior to the start of each semester, and so it is important to create a schedule for yourself that does not result in having too many finals on the same day!

Please note that no late homework assignments will be accepted for any reason; should you miss a homework assignment, then that will simply be one of the two homework grades that is dropped when computing your average for the “homework” component of the course. “Makeup exams” for the two
midterms will be considered only for the most dire and verifiable circumstances beyond the control of the student. Finally, there is no “extra credit” available in this course, and no form of cheating will be tolerated; if cheating is determined to have occurred, it will result in automatic failure in the course and additional disciplinary action by the University.

Grade Calculator Worksheet

To compute your final grade in the course:

Step 1: Write down all of your homework grades (percentage equivalents):

Step 2: Now, cross out the lowest two homework grades. Add the remaining grades together and divide by the total number of graded homework assignments (i.e., total number of homework assignments given minus 2). Write down that number here:

Step 3: Take the number obtained in step 2, and multiply it by 0.1. Write that number down here, and put a box around it:

Step 4: Take your first midterm exam percentage and multiply it by 0.2. Write down that number here, and put a box around it:

Step 5: Take your second midterm exam percentage and multiply it by 0.3. Write down that number here, and put a box around it:

Step 6: Multiply your final exam percentage by 0.4, and write that number here, and put a box around it:

Step 7: Add the boxed numbers from Steps 3, 4, 5, and 6 together and write it here. This is your final percentage grade for the course.

Step 8: Use the grade scale given on the previous page to calculate your final letter grade, and write it down here:

In all likelihood, this is your final grade for the course. In exceptional cases, if your grade falls near a borderline (i.e., within about 1% or so of the next grade) I may raise your grade by up to one mark (e.g., C- to C; B+ to A-, etc.) based on such subjective criteria as my sense of your overall enthusiasm for the class and course material. This can be demonstrated in many ways, including “class participation” (note that giving the sense that you are an engaged listener is considered to be just as important as actively contributing to the discussion), attendance, coming to office hours, evidence of effort and dedication, and so forth. Note that I will never lower a grade that you have earned; your enthusiasm can only help you.

To request an exam at a nonstandard time, please read and carefully follow all instructions on the form “Requesting an Exam at a Nonstandard Time”, available at the course web-site (click on “Course Handouts”, and then click on “Requesting an Exam at a Nonstandard Time”). Note that makeup exams will differ from the exams given in class, and may include (or consist entirely of) a one-on-one oral interview with the professor.
Strategy

And now, some time-tested tips for success in this class:

- **Do the reading.** Each Tuesday you will be given a “Reading Guide” as part of the weekly handout, which includes the reading assignment for the week. The reading is generally due the following Tuesday. Do the assigned reading. The textbook contains the bulk of the material for which you are responsible in this course. That said, most students have found it very beneficial to...

- **Come to lecture.** Lectures are based on the text, but a conscious effort is made to present the material in a somewhat different manner from that given by the book. Everyone has a different preferred learning style; some find lectures the best way to learn the material, some find a textbook presentation most helpful, but everyone benefits from seeing the material presented more than one time and in multiple ways. By coming to lecture you will also see just what information is being emphasized – this is likely to be the same information that is stressed on your exams.

- **Use the weekly on-line reading quizzes to test your understanding of the material.** The on-line reading quiz questions are designed to be similar in form and content to those that will appear on your in-class exams. Since the quizzes are open book/note, there may be a temptation to simply read the questions and then “look up” the individual answers. Don’t do this. Rather, study the material thoroughly before looking at the quiz; then, print out the quiz and take it off-line as though it is a test. After you’ve done this, then look up any answers that you are unsure about before submitting your quiz online. Use of this self-correcting technique will enable you to gauge how well you are mastering the material before facing it on an exam, and force you to engage in the material at a high level each week.

 Also, be sure to work through the assigned on-line tutorial exercises. While formally these exercises are optional, many students find them to be very helpful in gaining an understanding of conceptually difficult material.

- **Get help.** Come to my office hours. Go to TA Help Room hours. There are lots of opportunities to get individual assistance on the course material – use them!

- **Study.** Material is covered at a fairly rapid pace in class, and must be reviewed at home for complete comprehension. **It is expected that you spend at least 6 hours per week studying the material outside of class!** Don’t wait until the last minute to prepare for an examination. This course presents a large amount of information, and it can really “catch up to you” if you do not stay current with the readings.

- **Visit the course website, http://sciences.sdsu.edu/~leonard/astro101, when needed.** There you will find all of the class handouts and assignments, in case you missed anything. All Powerpoint slides from the lectures are also posted there, usually within a day after the lecture is given.

Other Things

- **Furlough impact.** The impact of the required faculty furlough this semester is completely contained to one week: For the week of March 15 → 19, no classes will meet (i.e., no class meetings on Tuesday, March 16 and Thursday, March 18), and my office hours (i.e., Thursday, March 18, from 3:30 — 5:30 PM) will not be held. **All other weeks remain as normal.**

- **Contacting the professor.** Ordered from the best way to get in touch with me to absolute worst way to get in touch with me:

 1. **Best way:** *Come to office hours.* This is absolutely the best way to get help from me in a one-on-one (or small group) setting. My office hours are a low-pressure environment, and you don’t even need to come with specific questions in mind – if you just want to talk about the

3The TA Help Room is located in the Physics-Astronomy Building, Rm. PA-215. Hours to be announced.
material in general or have me review some concepts with you that is fine. Office hours are
Thursdays, from 3:30 — 5:30 PM, in the physics building, Rm. 238, and I strongly encourage
you to use them; no appointment is needed. If these hours don’t fit your schedule and you must
meet with me, let me know and we may be able to work out another time to meet.

2. **Good way:** Send me email. This is an effective way to contact me directly. I am very responsive
to emails, often responding within minutes and almost always within 24 hours. When sending
me email please, if at all possible, send it to me in “plain text” format. It is difficult for my
ancient emailer to read “rich-text” or “HTML-formatted” emails. Usually, you can change the
format of your outgoing email by changing the “settings”.

3. **OK way:** Catch me right after class. If you have a very quick question (or need to let me know
something) that can be dealt with in under a minute or so, catching me right after class can be
effective. If your question turns out to be more complicated, I may ask you to come back to my
office to discuss.

4. **Poor way:** Call my office. This is not such a great way to get hold of me, as I am frequently
out of the office, or, if I am meeting with other students at the time, I may not even answer the
phone. Send email, and you’ll likely get a better response.

5. **TERRIBLE way:** Come up right before class. Please do not try to talk with me immediately
before class, either at my office or in the lecture room. This is absolutely the worst time to
attempt to communicate with me. Before lecture I am likely busy getting the lecture material
ready/Powerpoint working/etc. If it’s a quick question, or you need to let me know something,
speak with me right after class or, even better, during office hours or through email.

- **Class videos.** If you get to class a little early, on most days you will find a video playing, usually
having something to do with the material to be presented in that day’s lecture. *Getting to class early
to watch these videos is completely optional*; they will never contain required material that is not also
presented during the formal lecture and/or by the textbook. The official class will never begin before
class time (i.e., 9:30 AM or 2:00 PM, depending on your section). That said, many students in the
past have found the videos to be a relaxing way to get introduced to the topics being discussed in
the course, before class actually begins.

- **Asking questions.** Although our class is large, questions during lecture are encouraged – don’t be
afraid to put your hand up if something has confused you. In particular, the first ten minutes or so of
every Tuesday’s class will be specifically set aside to answer any questions that you may have about
the course or material.

- **Your professor’s five “pet peeves”**. Here are five things that really annoy me, so please do your
best to not do them! The first two involve keeping our class time a focused, structured environment
for learning, while the last three are more general issues.

1. **Talking in class while I am lecturing.** This is my biggest single pet-peeve. Nothing bothers
me more than this, so please refrain from *all* conversations with other students while the lecture
is taking place.

2. **Using a cell phone during class.** Please turn all cell phones off before entering the lecture
room and store them out of sight. I do not want to *see* or *hear* any cell phones during class.
 → If you need to speak with another student or use your cell phone (for *either* text messaging
 or talking) during class, please quietly leave the lecture room and then quietly return when you
 are done.

3. **Requesting an assignment extension.** Solutions to the weekly reading quizzes are posted
on-line immediately after each quiz is due. It is therefore not possible to grant any assignment
extensions for the reading quizzes. Furthermore, this course has built-in safeguards to prevent
personal, unforeseen or “emergency” circumstances from adversely affecting your overall perfor-
mance on these quizzes for the semester. Specifically, the lowest two homework scores (which
may include an assignment on which you scored 0% – e.g., you were unable to take it) are not
counted when computing your final course grade. Thus, you can completely miss up to two homework assignments (for any reason) and it won’t hurt your grade. So please, do not ask for any extension to a reading quiz assignment.

4. **Emailing questions about the course that are answered in the Course Reader or Weekly Handouts.** I try very hard to have all relevant course information (e.g., assignment due dates, exam dates, etc.) contained in the Course Reader or, if it is of a late-breaking variety, in the updated Weekly Handouts that are available at the course website. It almost never happens that I say something in class about the course that is not also contained in the Reader and/or Weekly assignments. So please — especially if you miss a class — before emailing me a question, check to see that it is not already answered in the Reader or Weekly Handouts! (Note that questions about astronomy are always welcome!)

5. **Leaving class before it is over.** I will lecture right up until the official end of our class period (10:45 AM or 3:15 PM, depending on your section). I will never end class late, and will almost never end it early. The very end of each lecture is in fact the most important part, since all lectures end with a summary slide of the class. It is a huge distraction when students begin leaving with a few minutes to go; the shuffling and noise make it difficult for others to hear and see the final parts of the lecture. Thus, I request that you not get up to leave the lecture until it is over. If you are unable to stay for the entire lecture, then please exit the room more than ten minutes before the end (i.e., by 10:35 AM or 3:05 PM, depending on your section).

- **Classroom safety.** For all information concerning safety in the classroom, please read the information contained at San Diego State University’s “Emergency Preparedness” website: http://bfa.sdsu.edu/emergency/.

Summary of Course Policies

To ensure that there is no confusion (or surprises at course’s end) I explicitly state three of the more important course rules here.

- **There is no “extra credit” given in this course.** Focus all of your efforts on the “for credit” parts of the class (i.e., reading quizzes and exams)!

- **There are no assignment extensions, and “make-up” exams will be considered under only the most extraordinary (or otherwise unavoidable) and verifiable circumstances.**

- **No course grades of “Incomplete” (I) will be given.** If your performance in Astronomy 101 is less than satisfactory to you as the semester draws to a close, then your only options are:

 1. **Course Forgiveness.** At SDSU, you are permitted to retake up to 16 units of lower division courses when a grade of C- or lower is achieved, and have only the most recent grade counted towards your GPA. You can thus choose Course Forgiveness for Astronomy 101 if you do poorly the first time through, and retake it (once) in a future semester (either with me, or with a different professor) and hopefully improve your final grade. Please see p. 445 of the current SDSU General Catalog for all of the details on repeating a course.

 2. **Course Withdraw.** If you feel that you have a compelling case, you can petition to get a “late” (i.e., it’s after the 15-class day drop period) withdraw from Astronomy 101. Please see p. 443 of the current SDSU General Catalog for details on the process. Note that all of the paperwork (this includes obtaining my signature, getting the approval of the dean of the college of your major, and filing the forms with the Registrar) must be completed by the last day of classes (Wednesday, May 12, 2009). In general, I am sympathetic to allowing you to withdraw from the
class if you have a solid, documented reason (i.e., I will give you my signature; convincing your dean and the Registrar is up to you!). Note, though, that the last time that I am available to sign a course withdraw form is Tuesday, May 11, at 3:30 PM.

3. **Complete withdraw from the entire semester.** If your performance in all (or most) of your classes has been severely impacted by a cause beyond your control, you can consider a complete “retroactive withdraw” from the University for the Spring 2010 semester. Details on this process are on p. 443 of the current SDSU General Catalog. Note that this is your only option if it is after Wednesday, May 12!

→Note that the best way to avoid having to chose among any of the above actions is to do well in the class! In this regard, I point out that the final exam is worth 40% of the course grade, so that a strong performance on that can drastically improve your final mark.

(Mileva Maric and Albert Einstein, c. 1902.)
Key Concepts, Terms, People and Ideas

Here is a list of some of the more important concepts, terms, people, and ideas in the approximate order that you will encounter them in the course. This list can be used as both an organizational aid during lectures (i.e., as each term is discussed, you can write notes next to it) and to help you prepare for exams. **Note, however, that this list is NOT exhaustive, and does NOT include “everything” for which you are responsible in this class.** It is provided merely to assist you during lectures, and to provide a framework for what is being covered in class. That said, a mastery of these terms will certainly go a significant way towards giving you a more complete understanding of the material covered by this course.

- Star
- Light year
- Nebula
- Earth
- North Pole
- South Pole
- Equator
- Latitude
- Longitude
- Sun
- Horizon
- Celestial sphere
- Conceptual scheme
- Elevation
- Zenith
- Celestial Poles
- Celestial Equator
- Polaris (North star)
- Circumpolar
- Planets
- Ecliptic
Constellation
Asterism
Zodiac
Retrograde motion
Parallax
Cosmology
Geocentric
Heliocentric
Aristotle
Eclipse
Lunar eclipse
Eratosthenes
Plato
Epicycle
Claudius Ptolemy
Aristarchus
Solar System
Copernicus

De Revolutionibus
Telescope
Galileo
Astrology
Hipparchus
Precession
Law of Inertia
Galileo's Principle of Equivalence
Johannes Kepler
Isaac Newton

Kepler’s Three Laws of planetary motion

Orbit

Ellipse

Perihelion

Aphelion

Astronomical unit

Period

Mass

Speed

Velocity

Momentum

Acceleration

Force

Newton’s Three Laws of motion

Conservation of momentum

Gravity

Fundamental forces of nature

Escape velocity

Weight

“Weightless”

Asteroid belt

Asteroid

Volume

Density

Angular momentum

Newton’s law of gravity
Inverse square relation

Properties of an ellipse: focus, semimajor(minor) axis, eccentricity

Newton’s version of Kepler’s Third Law

Moon

Angular Diameter

Solar eclipse

Corona

Comet

Terrestrial planets

Jovian (or giant) planets

Differentiation

Meteor/meteorite

“Shooting Star”

Greenhouse effect

Solar nebula

Planetesimals

Electron

Proton

Neutron

Element

Atom

Periodic table of elements

Atomic notation

Ion

Apparent brightness

Luminosity (or power)

Inverse square law of light propagation
Standard candle (bulb)
Isotope
Speed of light
Reflection
Refraction
Dispersion
Spectrum
Spectroscopy
Continuous spectrum
ROYGBIV
Bright-line (emission-line) spectrum
Rarified
Dark-line (absorption-line) spectrum
Kirchoff’s 3 laws of spectral analysis
Wave
Medium
Frequency
Wavelength
Electromagnetic waves
Electromagnetic spectrum: gamma, X, ultraviolet (UV), visible, infrared (IR), radio
Hα line
Doppler effect
Blueshift
Redshift
Radial velocity
 Extrasolar planet
Proper motion
Photon
Quantum mechanics
Ionization energy
Sunspot
Photosphere
Blackbody radiation
Conservation of Energy
\[E = mc^2 \]
Strong force
Nuclear fusion
Thermonuclear reaction
Neutrino
Antimatter
Neutrino oscillations
Gas pressure
Radiation pressure
Hydrostatic equilibrium
Nucleosynthesis
Nuclear fission
Interstellar gas/dust
Main-sequence star
Stellar evolution
Red giant star
Low mass vs. high mass star
Mass loss
Planetary nebula
Binary star
Center of mass
White dwarf
Electron-degeneracy pressure
Chandrasekhar limit
Neutron star
Supernova
SN 1987A
Core-collapse (Type II) supernova
Neutron-degeneracy pressure
Black hole
Neutron bombardment
Pulsar
Mass transfer
Accretion disk
Thermonuclear (Type Ia) supernova
Nova
Singularity
Event horizon
Schwarzschild radius
General theory of relativity
Principle of equivalence
Space curvature
Gravitational time dilation
Gravitational redshift
Spacetime
Gravitational waves
Photon sphere
Tidal force
Arcsecond
Parsec
Henrietta Swan Leavitt
Cepheid star
Edwin Hubble
Galaxy
Milky Way
Spiral galaxy
Elliptical galaxy
Irregular galaxy
Galaxy rotation curve
Dark matter
Supermassive black hole
Vesto Slipher
The Big Bang
Hubble diagram
Hubble law
Hubble constant
Cosmological principle
Cosmological redshift
Critical density
Accelerating universe
Cosmological constant
Dark energy