Announcements

- **Astronomy Help Room hours.** In addition to my office hours (Tues. & Thurs. 3:30 – 5 PM, Rm. 238 physics building), there are lots of opportunities to get individual assistance with the course material. The Astronomy Help Room (Rm. 215, Physics-Astronomy building) is staffed 14 hours each week by graduate teaching associates for just this purpose. No appointment is needed, just stop by. The hours for general help are:
 - Monday: 12 – 2 PM; 5 – 6 PM
 - Tuesday: 12 – 2 PM; 5 – 6 PM
 - Wednesday: 12 – 2 PM; 5 – 6 PM
 - Thursday: 12 – 3 PM
 - Friday: 11 AM – 12 PM; 1 – 2 PM

 Meeting with **any** of the teaching associates will be helpful. Note, though, that the two teaching associates who are specifically attached to your section of Astronomy 101 are in the Astronomy Help Room at the following times:
 - Azalee Bostroem: Monday 1 – 2 PM and Thursday 1 – 2 PM
 - Emilio Enriquez: Thursday 12 – 1 PM and Friday 11 AM – 12 PM

 Since Azalee and Emilio are part of your course (and will have attended the lectures), they will likely be able to provide more specific guidance than the other teaching associates, so definitely seek them out. But, you are of course encouraged to go to the Help Room whenever it is convenient for you!

- **On-line Course Material:** Last Thursday, you were introduced to the “on-line” component of this course, which will contain the weekly Reading Quizzes as well as helpful “tutorial” material. All of the instructions for registering and using this required resource are contained in the handout, **On-Line Homework and Weekly Reading Quizzes** that was given out in class; it is also available at the Course Web Site:

 http://sciences.sdsu.edu/~leonard/astro101

Please see this handout for instructions on how to register, if you have not done so already. Note that to register, you need to have purchased a new text from the SDSU bookstore, which contains the required “access code”. If you did not do this, you will need to purchase a code on-line; instructions for how to do this are given in the handout.

- **Planetarium shows:** Having trouble visualizing the celestial sphere? Help has arrived. The astronomy department is providing special shows beginning next week in its planetarium, Rm. PA 209 (physics-astronomy building). While it is not required that you attend a show, I **strongly encourage** you to take advantage of this opportunity to enhance your understanding of the night sky. Shows will last about 1 hour, and are being given at the following times (all shows are the same):
 - Tuesday, September 11: 9:30 AM and 11:00 AM
 - Wednesday, September 12: 9:00 AM and 11:00 AM
 - Thursday, September 13: 12:30 PM and 2:00 PM
 - Tuesday, September 18: 12:30 PM and 2:00 PM
 - Wednesday, September 19: 12:00 PM and 1:00 PM
 - Thursday September 20: 9:30 AM and 11:00 AM

Since the planetarium can only accommodate 52 students per show, to attend a show **you must first sign up on the sheets** posted on the door to the planetarium (Rm. PA 209). On the sheets, indicate the show time that you would like to attend, as well as your instructor for astronomy 101 (Leonard!). At the show, roll will be taken to confirm your attendance, and I will be given the list of names of the students that have attended. While there is no formal “extra credit” given in this class, attending this activity is certainly one of those extra indications of effort and interest that I may take into consideration when deciding whether to bump up a borderline grade at semester’s end (see the Syllabus Handout for more details on this). The shows are also quite entertaining and informative!
This week, we continue reading from Chapter 1, and also introduce the on-line component of the course. As you read this material, be sure to keep your attention focused on the big picture of what is being presented, and not get mired in the details. For instance, you do not need to know the names of the constellations that are on the ecliptic, but you do need to know what the ecliptic is! Achieving a good mental picture of the celestial sphere can be challenging; it’s the kind of thing, though, that once you figure out what's going on, everything just falls into place. Working with an actual physical model of the celestial sphere (like we did in class) can help greatly, so I encourage you to stop by my office hours and/or visit the TA help room to work with them. Other key areas to make sure you understand from this reading include Eratosthenes’ measurement of the Earth’s size and how retrograde motion is explained in the heliocentric model of the solar system. We covered much of this in class, but the book works it out in more detail in some areas.

1. Register for access to the on-line textbook website by following the instructions detailed in the handout: On-Line Homework and Weekly Reading Quizzes, given out in class last week (and available at the course web-site).

2. Course Reader: Pages 129 – 136: A Mathematical Toolkit – Please read the section on Geometry (on p. 129) before Thursday's class this week!

 Wondering about the math that will be used in this course? Then this Toolkit is for you. This handout reviews the basic mathematical concepts and skills that you will be expected to know and have for this class. Please read the handout thoroughly and work through all of the examples. While all of the material in here should be review, it may have been a while since you last exercised the mathematical part of your brain, so spend some time with it. Mastering this material now will save you a lot of headaches down the line. Note that we shall not spend much class time reviewing this material, so if you do experience difficulty, please see me during office hours, or the TAs during help-room hours, for assistance. Remember: now is the time to get help with the mathematical component of this class.

3. Text – Chapter 1, Sections §1.1.3, 1.1.4, and 1.1.5: Rising and Setting of the Sun, Fixed and Wandering Stars, and Constellations.

 These sections describe the basic motions of the sun and planets on the celestial sphere, material covered thoroughly in class as well.

4. On-line tutorial: On the “Week2_tutorial” section of the textbook website, work your way through the Active Figures entitled: “Celestial Sphere”, “Daily Motion in the Sky”, “Constellations from Different Latitudes”, and “Constellations in Different Seasons”. For the last two Active Figures, focus mainly on the concepts being described; you do not need to memorize the constellations themselves, of course.

5. Text – Chapter 1, §1.2.1, 1.2.2, 1.2.3, and 1.2.5: Astronomy Around the World, Early Greek and Roman Cosmology, Measurement of the Earth by Eratosthenes, and Ptolemy’s Model of the Solar System.

 These sections tackle astronomy in ancient times, and proceeds in a slightly different order from how we covered it in class. Be sure you understand Eratosthenes’ method for figuring out Earth’s size (see also the on-line tutorial assignment, below); quite incredible that this was done in 200 B.C., no?

6. On-line tutorial: Work through the Active Figures called “Eratosthenes’s Experiment” and “Epicycles”.

7. On-line reading quiz: Take this week’s reading quiz by clicking on the “Week2_quiz” assignment at the on-line textbook web-site. You must complete this on-line quiz by 11:59 PM Tuesday, September 11. As explained in the handout (On-Line Homework and Weekly Reading Quizzes), after you have taken the quiz once, you will see which questions you answered incorrectly; you then have the opportunity to take the quiz a second time at any point before the due date, and attempt to correct any/all of your mistakes. Your best, final score is what counts as your homework grade for the week. The quiz is open book and open notes; you may even consult with friends while taking it. However, you must submit your own quiz.